Matrix Riccati equations and matrix Sturm–Liouville problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled matrix Riccati equations in minimal cost variance control problems

We present an algorithm for the solution of a nontrivial coupled system of algebraic Riccati equations appearing in risk sensitive control problems. Moreover we use comparison methods to derive non blow up conditions for the solutions of a corresponding terminal value problem for coupled systems of Riccati di erential equations.

متن کامل

GIP integrators for Matrix Riccati Differential Equations

Matrix Riccati Differential Equations (MRDEs) are initial value problems of the form: X 0 1⁄4 A21 XA11 þ A22X XA12X; Xð0Þ 1⁄4 X0: These equations arise frequently throughout applied mathematics, science, and engineering. It can happen that even when the Aij are smooth functions of t or constant, the solution X may have a singularity or even infinitely many singularities. This paper shows severa...

متن کامل

On Solving Large Algebraic Riccati Matrix Equations

In this paper, we present a numerical method for solving large continuous-time algebraic Riccati equations. This method is based on the global FOM algorithm and we call it by global FOM-Riccati-Like (GFRL) algorithm .

متن کامل

Perturbation Analysis of Coupled Matrix Riccati Equations

Local and non local perturbation bounds for real continuous time coupled algebraic matrix Riccati equations are deriv ed using the technique of Ly apunov majorants and xed point principles Equations of this type arise in the robust analysis and design of linear control systems

متن کامل

Unconventional Reeexive Numerical Methods for Matrix Diierential Riccati Equations 1 Unconventional Reeexive Numerical Methods for Matrix Diierential Riccati Equations

Matrix Di erential Riccati Equations (MDREs) X = A21 XA11 + A22X XA12X; X(0) = X0; where Aij Aij(t), appear frequently throughout applied mathematics, science, and engineering. MDREs play particularly important roles in optimal control, ltering, estimation, and in two-point linear boundary value problems. In the past a number of unconventional numerical methods that are suited only for time-inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2004

ISSN: 0022-0396

DOI: 10.1016/j.jde.2003.10.013